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NASA TT F-9209 

G. A. Grinberg 

ABSTRACT \A2 73 
The author discusses f low i n  a pipe of a rb i t r a ry  cross 

section with nonconducting walls. 

duced magnetic f i e l d  H a re  pa ra l l e l  t o  the ax is  of the pipe 

and the external f ie ld  i s  uniform, the solution of the prob- 

lem essent ia l ly  involves determination of the Green's func- 

IT the velocity v and in-  

t i on  f o r  the two-dimensional equation A 4  - M'$I = 0 and the 

corresponding region (M i s  the Hartmann number). The author 

has writ ten an in tegra l  equation f o r  the derivative of the 

Green's function normal t o  the contour, through which the 

er;tire s e h t i o n  i s  cxp-essed i n  cpadmti-ires. For tile case 

of large M, Grinberg has presented a rapidly converging 

process of successive approximations and obtained an asymp- 

t o t i c  solution of the integral  equation, by means of which 

it i s  possible t o  f ind  the values v and H a t  any point 

within the pipe. The case of a rectangular pipe, f o r  which 

the Green's function i s  determined precisely,  a lso i s  con- 

s idered. 

%wibek.s given i n  the margin indicate the pagination i n  the or iginal  foreign 

tex t .  
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1. It has been demonstrated by Shercliff  i n  re f .  1 tha t  if  an external 

magnetic f i e l d  €I? i s  uniform and the f i e l d  of veloci t ies  and the induced elec- 

t r i c  and magnetic f i e l d s  a re  not dependent on the z-coordinate, read i n  the 

direction of the axis of the pipe, there i s  a solution of the equations of 

steady motion of a conductive viscous incompressible f l u i d  along the pipe when 

the velocity v and the induced magnetic f i e l d  H a r e  directed p a r a l l e l  t o  the 

z-axis and sa t i s fy  the equations 

here the x-axis was selected i n  the direction of the f i e l d  I@; ‘5, p, q , and c 

denote conductivity, magnetic permeability, the coefficient of viscosi ty  of the 

f l u i d  and the speed of l i g h t  respectively; a - 

assumed to  be constant i n  the cross section of the pipe. 

= Po i s  the pressure gradient, 
dZ 

The boundary conditions on the walls of the pipe, which we w i l l  consider 

nonconducting, cause the two values v and H t o  become equal t o  zero on the  

contour s of the pipe. 

The solution of the problem has been given i n  r e f .  1 f o r  a pipe w i t h  a 

rectangular cross section and i n  r e f .  4 f o r  a round pipe. 

solution i s  presented i n  the form of trigonometric se r ies  obtained by the par- 

t i c u l a r  solutions method. 

of the Hartmann number, i s  very unsuitable i n  the case of i t s  large values, 

since the convergence of the ser ies  worsens badly with an increase of the Hart- 

In  both cases, the 

Such a form of solution, suitable f o r  small values 

mann number. The s i tua t ion  here 

of wave diffract ion on bodies of 

i s  similar t o  tha t  

f i n i t e  s ize ,  where 

which occurs i n  the theory 

the convergence of the 
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ser ies  obtained using the particular solutions method worsens sharply w i t h  an 

increase of the r a t i o  of the characterist ic s ize  of a body t o  wavelength. 

t h i s  reason it i s  necessary e i ther  t o  transform the derived ser ies  t o  a d i f f e r -  

ent form under these conditions, i n  order t o  obtain a form of solution more 

suitable f o r  large values of the Hartmann number ( for  a rectangular pipe the 

appropriate procedure already has been noted i n  Sherc l i f f ' s  f i r s t  study, r e f .  

l), o r  seek some other approach t o  a precise solution of the prob1em.l 

an approach, applicable t o  the case of a rectangular pipe, was presented i n  our  

paper c i t ed  as  r e f .  3 and involves the use of the corresponding Green's func- 

t ion  f o r  an equation of the form Au - m% = 0, where 

For 

Such 

This paper w i l l  present a generalization of t h i s  method f o r  the case of a pipe 

of a rb i t ra ry  cross section. 

Hartmann numbers. 

large Hartmann numbers tha t  this method i s  par t icular ly  effect ive and makes it 

possible t o  obtaiin an. appr~xi imte sdctim cf the pmblem 'in very siinple form. 

Proceeding t o  the solution of the problem, we introduce new functions 

Particular a t tent ion i s  given t o  the case of large 

A s  w i l l  be shown below, it i s  especially i n  the case of 

2. 

i n  accordance with the usual procedure, specif ical ly  

1An approximate solution of the problem, based on physical considerations, mak- 

ing it possible t o  simplify the i n i t i a l  equations, has been given i n  r e f s .  1-3, 

6 and elsewhere. 

L 



f o r  which equations of the following form are obtained 

h* * 2m - aw, = 0 
dx ’ 

w i t h  the  bo1mdary conditions 

Assuming further 

w*=erm”ylt, I 

we obtain f o r  the function 9, the single-type equation 

AY*--*Y&=O- 1 

and the boundary conditions 

(2.4) 

Now introducing in to  consideration the Green’s function f o r  equation ( 2 . 5 ) ,  

having the ford 

lThis obviously 

two -dimensional 

i s  re la ted d i rec t ly  t o  the corresponding Green’s function f o r  a 

Helmholtz equation A q+ k’q = 0, since equation (2.5) differs 

from a Helmholtz equation only by replacement of the r e a l  wave number k by the 

imaginary wave nmber, k = i m .  

4 
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where r = PQ i s  the distance between the f ixed  point P(x, y) and the variable 

point Q(4, v )  of the region bounded by the contour s; %(z) i s  MacDonald's 

function; u(x, y, I ,  T )  i s  a solution of equation (2.3), not having s ingular i -  

t i e s  within s ,  satisfying on s the equation 

1 1. = I,, 

SO that gts = 0, we obtain 

where n i s  the external normal t o  the contour s and Q( €, rl ) i s  a point of the 

contour. This gives fur ther  

( 2 . 9 )  

(2.10) 

The value $$ entering into these formulas admits the following sirhple 

-L-*" p l y  a i c a l  interpretat ion i n  ,terms of iine e iec t ros ta t ic  problem. We w i l l  assume 

t h a t  the f l u i d  i s  removed from the pipe which we have investigated, the walls 

have been made conductive and within these walls there i s  an in f in i t e ly  long 

filament with a charge having the l inear density eo = -cos mz; the charge 

var ies  sinusoidally along the length of the filament; the filament passes 

through the point P(x, y, 0 ) ,  paral le l  t o  the axis  of the pipe (z-axis).  

the influence of t h i s  charge induced charges appear on the walls of the pipe. 

These induced charges have the surface density TP = up( s) cos mz,  where op( s) 

i s  dependent only on the coordinates t , T  of the considered point on the wall 

Under 
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of the pipe, i.e.,  only on the position on the contour s of i t s  projection Q on 

the plane z = 0, and also on the  coordinates x, y of the point P. 

we have the relationship 

In t h i s  case 

(2.11) 

where %IQ applies t o  t h i s  same point Q( E, q ) of the contour s as  op( s) -: op(Q) .l 

The density o (Q) s a t i s f i e s  the following integral  equation P 

(2.12) 

where K1(z) = -Ki(z) ,  Q and A are fixed and variable points on the contour s; 

8 i s  the angle between the external normal t o  s a t  the point Q and the vector 

MQ, where M i s  some point i n  the  region; the in tegra l  i s  applied along the con- 

tour s (figure 1) and asA denotes an element of arc  of the co’%our a t  the 

point A. 

MQ 

Y 
4 

I - X  

Figure 1 

~~ ~ 

lThe explanation of t h i s  assertion and the derivation of in tegra l  equation 

(2.12) f o r  the density o (Q) i s  given i n  the Appendix a t  the end of the paper. 
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If op(Q) i s  found from this integral  equation, by substi tuting it i n  place 

into equations (2.9) and (2.10), w e  obtain the solution of the formulated of dn 
problem. 

large Hartmann numbers and we now w i l l .  demonstrate t ha t  i n  t h i s  case an approxi- 

mate solution of equation (2.12) can be found w i t h  ra ther  general asswnptions 

concerning the configuration of the contour s, provided w e  l i m i t  ourselves t o  a 

consideration of such points P(x, y) within the contour f o r  which ml'-l, where 

1 i s  the shortest  distance from this point t o  the contour. 

I n  t h i s  paper we are  concerned, a s  indicated above, w i t h  the  case of 

In  ac tua l i ty ,  f o r  the solution of equation (2.12), i n  t h i s  case, we w i l l  

attempt t o  apply the successive approximations method; as  the f i r s t  approxima- 

t ion  we select  the value 

obtained by dropping the in tegra l  term i n  (2.12). 

the condition, we have m P e - 1 ,  it i s  possible t o  use the  asymptotic represen- 

t a t ion  

Since, i n  accordance with 

which gives 

(2.14) 

I n  order t o  obtain a second approximation o ( ~ ) ,  we introduce the value /I724 
P 

(2.1k) o ( l )  in to  the right-hand side of equation (2.12) P 
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It can be seen d i rec t ly  from this formula t h a t  f o r  suf f ic ien t ly  large 

values m no appreciable contribution t o  the value of the in tegra l  i s  given ex- 

cept by the par t  of the a rc  of the contour d i rec t ly  adjacent t o  the point Q. 

In  ac tua l i ty ,  as  soon as  we withdraw from Q by such a distance AQ tha t  mAQ))' 1 

it i s  possible t o  assume 

so tha t  the product e-mPAK,(mAQ) i s  proportional t o  e dPA + 

exponent we have the value m(PA + AQ), where PA + AQ gives the length of broken 

PAQJAexceeding the value PQ entering into the exponent i n  the f i r s t  term t o  the 

r igh t  i n  equation (2.15), 

here i n  the 

&e ,,e,tcr 

the  fa r ther  we depart from the  point Q.l 

Therefore, f o r  suf f ic ien t ly  large m it i s  necessary i n  the asymptotic computa- 

t ion  of the integral  entering in to  (2.13) t o  l i m i t  ourselves solely to  the i m -  

mediate neighborhood of the point Q. 

We now w i l l  make the corresponding computations, assuming f o r  simplicity 

that  Q i s  not an angular point of the contour. After denoting the radius of 

curvature of the arc of the contour a t  the point Q by P, the center o f  curva- 

t u re  by 0, and introducing as an independent variable i n  the integration the 

length A& = t of the chord connecting the points A and Q and assuming PQ = a ,  

L AOQ = 2p, we obtain, assuming tha t  t e -  a and { \ s - 2 ~ ,  the following re la t ions ,  

t r u e  i n  contiguity to  &, t o  the right of it (see f igure 1): 

1 A t  l e a s t  i n  a case when the contour i s  convex, as  we w i l l  assume hereafter as  

a simplification. 

could be accomplished without special d i f f i cu l t i e s .  

A generalization of the derivation for more general cases 
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C 
2P ' cos 0,q = sin p = - I (2.16) 

. i  

- -u-CsinOp4+ . . . I 
(2.17) 

(2.18) 

For points A s i tuated t o  the l e f t  of Q the equations (2.16) and (2.18) re -  

main applicable, but (2.17) i s  replaced by PA = a + t s in  8 + . . . 
PQ 

In  the asymptotic computation of the in tegra l  entering into (2.15) it i s  

possible for suf f ic ien t ly  large m t o  approximately replace it by 

- Kl (mA Q) cos COS B P A ~  
- 

and it i s  assumed tha t  a <a and <2P, but me> 1 and the contributions t o  /1725 

the in tegra l  from arcs adjacent t o  Q on the r igh t  and l e f t  are  taken in to  ac- 

count sepra te lg  2nd fhe sln?~rly c h a ~ , ~ i ~ g  vsr isble  f ac t s r  

is replaced by i t s  value a t  the point Q. 
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By introducing the derived value (2.19) into equation (2.15) we f ind  that 

within the l imi t s  of the accuracy of our computations, we have the re la t ion  

Since mp ,Z 1 and since f o r  an inner point of a convex contour not too 

close t o  i t s  boundary cos 8 

(2.20)  t ha t  f o r  suf f ic ien t ly . la rge  values m o ( ~ ) ( Q )  d i f f e r s  as l i t t l e  as  de- 

s i red  from c r ( l ) ( Q ) ,  i .e., i n  t h i s  case, the in tegra l  term i n  equation (2.12) 

gives only a re la t ive ly  small contribution t o  the value u (Q) , which i n  the 

future ,  depending on the desired accuracy, w e  w i l l  assume equal t o  o ( ~ ) ( Q )  o r  

even simply equal t o  O ( ~ ) ( Q ) .  

does not become equal t o  zero,l  it follows from 
PQ 

P 

P 

P 

P 

P 
Comment. A s  an example w e  w i l l  consider the case of a c i rcular  contour s 

and we w i l l  consider the point P coinciding with the center of the c i r c l e .  

suming the radius of the circular  contour i s  equal t o  R, we f ind,  by using 

( 2 . a )  and (2.13) and noting that i n  t h i s  case PQ = R,  B P q  = 0 ,  

As- 

(2.21) 

This approximate formula f o r  o (Q) can be compared with a precise formula, P 
since i n  t h i s  case the precise Green's function i s  found eas i ly  and i s  equal to2 

1Except the case when the contour has a very elongated configuration; then cos 

can be as close t o  zero as desired. %Q 
aecause  (2.22) obviously satisfies equation (2.5), it becomes equal t o  zero 

when r = R and when r = 0 has a singularity of the required type (compare equa- 

t i o n  (2.7)).  
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(2.22) 

where r is the distance of the point& fromthe center P of the circle. 

ing to (2.11), we now obtain the precise value 0 (Q) , to wit: 
Accord- 

P 

Taking into account 

and K1( z )  have the form 

that when z% 1 the asymptotic expressions for Io( z) 

we find that 

whereas for the first approximation we have 

(2.24) 

(2.26) 

that is, the introduction of a correction factor in equation (2.20) appreciably 

improves the result. 

3. We now will proceed to determination of v and H. Using (2.11), we 

will rewrite equations (2.9) -( 2.10) so that 
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where x, y are the coordinates of that point P at which the values v and H are 

analyzed, and t ,  'hare the coordinates of the point Q of the contour s to which 

the element ds of the arc applies. 

For sufficiently large values of the Hartmann number it is possible to as- 

sume approximately in (3.1) -( 3.2) that CT (Q) = c i ( l ) (Q) ,  which gives 
P P 

(3.3) 

(3.4) 

Taking into account that 

and that when mPQ --l the products 

rn ( x  - €) K, (mPQ)  and ch m ( x  - E) K,:(mPQ)\ 

have the order of magnitude 

we see that an appreciable contribution to the values of the integrals comes 

only from the segments of the contour s adjacent to those points Q, and Q2 at 

which it is intersected 1?y the straight. line p = y ,  pzra l le l  to the external 

magnetic field @ (figure 2). Denoting by I ,  and i2 the €-th coordinates of 

these points, and in accordance with figure 2,x-'i1 and x--- i2, noting that in 

contiguity with Q1. and Q2 it can be assumed approximately that 
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i ...._ , 

+ A  
Figure 2 

and substi tuting t h i s  value into (3.3) we f ind ,  by replacing the slowly var i -  

able fac tors  

them from the in tegra l  signs1 

cos 8 by t h e i r  values a t  the points Q1 and Q2 and removing 
PQ 

Here, a s  before, .it i s  assumed tha t  cos 8 

i n  the segments of integration i n  contiguity with Q1 and Q2 i s  neglected, i .e . ,  

it i s  assumed tha t  dq = ds cos 8 

i s  carr ied out i n  the en t i r e  interval  

# 0, the curvature of the curve /1727 PQi 

and integration, as usual i n  such cases, 
p&i ' 

- ~~ 

1 I 

The fac tor  ( -1) 'appears 

t h a t  i n  contiguity with 

and i n  contiguity with 

under the sign of the sum i n  (3.3) due t o  the f a c t  

1. pi=-€l* -3- Q1 Sh m (X g ) . ~  p @--E) 

1 Qs shm(x- [ )a  e--pIHl 2 . .  . 0. 
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Thus, the velocity v i s  determined only by the length of the chord Q1Q2, 

corresponding t o  the coordinate y of the point P and i s  not dependent on x 

("layered movement") . 
Similarly we obtain 

aN+ qx 2c -$ (E, -+- Fa, 

which a l so  can be written as  

where (x - €l) and ( t 2  - x) are  the distances from the considered point P(x, y) 

t o  the points Q1( €l, y) and Q2(€*, y) of the contour and it i s  taken into ac- 

count t h a t  

It follows from the above, i n  particular,  t ha t  i f  each chord Q1Q2 i s  divided i n  

half and a curve i s  passed through the points of separation the f i e l d  H on t h i s  

curve everywhere i s  equal t o  zer0.l  It divides the region within the contour s 

i n  which the f i e l d  H becomes equal t o  zero into two par ts ,  i n  each of which the 

currents c i rculate  independently, without flowing from one par t  t o  the other. 

It a lso  can be seen from (3.7) tha t  

iIf v is  used t o  denote the normal t o  t h i s  curve a t  some point along it, and 'E 

i s  used t o  denote the tangent, it follows from the formula 

t ha t  t h i s  curve i s  not intersected by the f l o w  l ines .  

14 



where 
E j = 4~ rot N= 5 [grad H, i,] 

i s  current density i n  the f l u i d  and 

i s  the vector of magnetic induction, i . e . ,  t ha t  i n  the en t i re  region within the 

pipe f o r  which equations (3 .5)  and (3.7) were derived, the pressure &op i s  

balanced by electrodynamic forces and the forces of viscous f r i c t i o n  a re  negl i -  

gibly small. 

4. In section 3 w e  found general expressions (3 .5)  and (3 .7)  f o r  v and E, 

assuming tha t  nip&-1, i .e. ,  tha t  the point P a t  which the flow i s  studied i s  

not located i n  the immediate neighborhood of the walls of the pipe. 

We now w i l l  proceed to  a study of phenomena i n  the layer next t o  the wall. 

I n  t h i s  case it would be possible t o  obtain the r e su l t s  desired d i rec t ly  by 

computation of the integrals  entering in to  equations (3.1) -( 3.2) . 
w i l l  se lec t  a different  approach which i s  less rigorous but,  on the other hand, 

i s  very simple and graphic. We proceed on the bas is  of equation (2.2) and from 

the already derived solutions (3 .5)  and ( 3 . 7 ) ,  which we w i l l  assume are  approxi 

mately correct up t o  the boundary ( a rb i t r a r i l y  selected) of the layer next t o  

the wall, if the l a t t e r  i s  approached from within the pipe. It w i l l  be shown 

below tha t  the r e su l t s  a re  n o t  dependent (within the l imi t s  of accuracy of the 

problem considered) on the selection of the posit ion of t h i s  boundary, a s  

should be the case. 

However, w e  



We now w i l l  consider phenomena in the layer next t o  the wall i n  contiguity 

with these same points Qi, i = 1, 2, of the contour which were discussed i n  

section 3 . l  We now introduce a local system of rectangular coordinates n, I 

with or igin a t  the point Qi; the n-axis i s  directed along the normal t o  the con- 

tour within the pipe and the 7-axis is directed along the tangent; n, ? and i 

form a right-handed t r ihedral .  

t ions n and ixIj$, a t  the point Qi, which we consider d i f fe ren t  from - we w i l l  

have 

1172% 

Next, denoting by @i the  angle between the direc- 

Tc 

2, 

Since for suf f ic ien t ly  large values of the Hartmann number the thickness h 

of the layer next t o  the wall i s  small i n  comparison with the radius of curva- 

ture  P of the contour s a t  the poin tQi ,  we can approximately neglect the 

curvature of the layer i n  contiguity with Qi and also neglect the derivatives 

of I i n  (4.1) i n  comparison with the derivatives of n. 

assumes the form 

Thus, equation (4.1) 

and when n = 0 the boundary conditions (2.3) should be sa t i s f ied .  

i n  t h i s  case should be writ ten simply as 

The l a t t e r  

1That is, i n  essence a t  any points of the contour. 
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I 

With respect t o  the second boundary condition, we w i l l  assume tha t  when 

n = h, i.e., a t  the outer boundary of the layer next t o  the wall, v and H a t -  

t a i n  values determined by the equations (3.7) and (3.6). 

value h i n  comparison with E; t h i s  gives 

If we neglect the 

Thus, the boundary conditions from the direction of the point Q1 w i l l  be 

- 
(4.5) w+ In=O = 4 1 ;  Wu+. - qE2; w- J *=o-.!?- c-- = --9L I 

and from the direction Q2 

where A&, B+ are  constants and we have cos ai> 0 and cos a2/:0,  and provided 

h i s  such tha t  2mIcos al1-1, such as  i n  contiguity with Qa, we w i l l  have 

(with t h i s  same accuracy) 

w-=-&=const; W + = Q [ ~ ~ + ( E ~ - E ~ ) ~  ' --~nrnona,], 1 
(4.8) 

and i n  contiguity with Q2 

(4.9) 

17 



Hence, for v and H we obtain the equations 

(4.11) 

which determine the change of v and H with movement from the point Q1 within 

the pipe along the normal to the c0ntour.l 

/1729 

Similar equations are derived for the point Q2. 

We note that with movement from Qi along the normal through the layer next 

to the wall the magnetic field H changes by the value 

which indicates the presence of currents 

I=*c  P O ( E , - € J / 2  p HO 

n I 7  ~ 7 _ _ _ _ _ _  

*I 
(per unit length of the axis of the pipe), flowing in thes - 

W, = A e + B a e s 2 m Q O a  'Y 
- 0  

along the contour and in the backward direction. 

5. We also will consider a case of a rectangular contour with the sides 1 

and d in the direction of the field @ and perpendicular to it. The precise 

Green's function f o r  this case, given and used for solution of the considered 

problem in OUT study cited as ref. 5, section 5, is derived easily by the re- 

flection method and is equal -to 

m m  

1We note that n COS cy1 = X - f l -  

18 



here the or igin of coordinates i s  si tuated i n  the lower  l e f t  corner of the rec- 

tangle and t.he x- and y-axes a re  d-irected accordingly t o  the right along i+,s 

lower side and upward along i ts  l e f t  side. 

If the double ser ies  (3.1) converges more rapidly, the larger i s  the value 

of the Hartmann number. Therefore, if 

approximate solution even w i t h  a high degree of accuracy it i s  suf f ic ien t  t o  

l i m i t  ourselves, when substi tuting g into equations (2.9)-(2.10), t o  only a few 

terms of the ser ies  (3.1). 

point P(xy y ) ,  not lying within the layer next t o  the wall, i.e., such tha t  

mb-.. 1 (where b i s  the shortest  distance from P t o  the nearest wall) ,  the  only 

terms making a substant ia l  contribution t o  the  value v(x, y),  determined using 

equation (2 .9 ) ,  are  

1 and m d ' h 1 ,  i n  order t o  obtain an 

For example, if it i s  necessary t o  f i n d  v a t  the 

which give 

i n  f u l l  accordance w i t h  formula (3.3) of the general 

If the point P(x, y) i s  moved toward the wall x 

the inequality mr>1 no longer i s  sat isf ied,  but a s  

and m( d - y) ' - 1, it a lso  would be necessary t o  take 

( 5 . 3 )  

I 

theory. 

= 0 to  such an extent t h a t  

before we would have my%, 1 

into account terms corre- 

sponding t o  the re f lec t ion  P t ( -x ,  y) of the point P(x, y) i n  the direct ion x = 0 
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of the rectangle, and a l so  the reflection P"(2k+ x, y) of k e  point P' i n  the 

direction x = 1, i.e., the terms 
-. 

With these terms taken into account, fornula (5 .3 )  would be replaced, a s  11730 

can be confirmed easi ly ,  by 

(5.4) 

which corresponds f u l l y  t o  the equation (4.10) of the general theory, i n  which 

f o r  t h i s  par t icular  case it must be assumed tha t  f 2  - t1 = 1, a1 = 0 and n = x. 

In  a similar way it would be possible t o  consider any other posit ions of 

the point P, e.g., when it i s  located i n  the immediate neighborhood of one of 

the walls y = 0 or y = d or very near one of the angles. By increasing the 

number of terms used i n  the ser ies  (5.1) i n  case of necessity it always i s  

possible to  obtain a solution of the problem with any desired degree of accu- 

racy. 

6. We note i n  conclusion that although i n  t h i s  paper we have been con- 

cerned for the most par t  with the case of large Hartmann numbers the method 

discussed, involving the reduction of the general problem formulated a t  the be- 

ginning of the paper t o  the solution of the in tegra l  equation (2.12) for the 

density G (Q) and the subsequent quadratures (2.9)-(2.10), has a f u l l y  general 
P 

character. 'The simplification, introducing the assumption of a large value of 

the Hartmann number, was for no other purpose than t o  make it possible t o  indi-  

cate  the rapidly converging process of successive approximations f o r  finding 



aP(Q) and these approximations had a simple f 0 r m . l  For small and intermediate 

values of the Hartmann number t h i s  process can be unsuitable or disadvantageous, 

and then the solution of the problem requires the use of numerical or some other 

methods of approximate solution of equation (2.12). We note a lso tha t  i n  t h i s  

case it i s  unimportant whether the contour i s  simply o r  multiply-connected, 

convex or not, e tc . ,  because the principal equation (2.12) and equations (2.9)- 

(2.10) remain t rue i n  a l l  cases, provided that f o r  a multiply-connected region 

s i s  understood as the s e t  of contours l imiting t h i s  region. 

Appendix 

Explanation of the Electrostat ic  Analogy and Derivation of the 

Integral  Equation ( 2.12) 

We w i l l  consider here the internal e lec t ros ta t ic  problem f o r  an i n f i n i t e  

l inear  pipe with conducting walls, within which there i s  an in f in i t e ly  long 

filament with a charge having the density eo = e cos mz ( e  = const); the charge 

var ies  sinusoidally along i t s  length; the filament passes through the point 

P(x, y, 0 ) ,  pa ra l l e l  t o  the axis of the pipe (z-axis).  A t  the point M( 5 ,  rl , z )  

within the pipe such a filament creates an e lec t ros ta t ic  f i e l d  with the poten- 

t i a l  
aD 

1We have l imited ourselves above t o  determination of the principal terms of the 

asymptotic formulas f o r  v(x, y) and H(x, y) fo r  large values of the Hartmann 

number. 

more precisely,  it would be possible to  obtain the succeeding terms of the 

asymptotic formulas as well. 

It i s  obvious tha t  by using the same method, but making the estimates 

21 



where 

This f i e l d  induces on the walls of the pipe charges w i t h  the surface density 
- 
CJ = 0 (N)cos m, where ap(N) i s  dependent only on the coordinates of the pro- P P  
jection N of the considered point of the w a l l  on the plane z = 0, i . e . ,  on i t s  

posit ion on the contour s and on the coordinates x, y of the point P. 

charges create within the pipe a secondary f i e l d  w i t h  the po ten t i a l+2  = 

cp2( 5, , )cos mz. 

These (1731 

It follows from the relat ion 

tha t  q2 sa t i s f i e s  within s the equation 

i . e . ,  an equation of the form ( 2 . 5 ) .  

If it i s  required fur ther  than on the contour s the t o t a l  potent ia l  cp = 

cp + cp becomes equal t o  zero, a comparison with the conditions used f o r  deter-  1 2  

mination of the Green's function introduced i n  section 2 shows d i rec t ly  tha t  

g(p, Q) = -= '. The value of the potential  cp naturally applies t o  the same 

point Q([, t )  a t  which the Green's function g(P, Q) i s  considered. In t h i s  

case f o r  any point Q of the contour we obtain 

it therefore can be seen tha t  when 

we obtain precisely equation (2.11) of the principal t ex t  of the paper. 

W e  now w i l l  write an integral  equation which should sa t i s fy  the density crp. 

We note f i r s t  t ha t  the t o t a l  e lec t r ic  f i e ld  E, being the sum of the primary 

f i e l d  El = -grad (P1 and the secondary f i e l d  E2 = -grad a2 should become equal 
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t o  zero outside the pipe, since the charges 0 

nect a l l  the l ines  of force of %he primary f i e l d .  

induced on the walls f u l l y  con- 

Formulating the requirement 

P 

tha t  the component En of the t o t a l  f i e l d  normal t o  the contour should become 

equal t o  zero with approach of the contour s from the outside t o  any point Q of 

the cortour and the En consists of the normal components of the primary f i e l d  

(El)n = --and the secondary f i e ld  (E2),, which according t o  the well known 

theorem of potent ia l  theory i s  equal to  the sum 

Sal 
an 

where 

i s  the value of the normal component from the induced densi t ies  3 a t  the sur- P 

face of the pipe i t s e l f ,  we obtain equation (2.12) precisely and it i s  only 

necessary t o  take into account t ha t  *2 = q2 cos mz and q2(M) =2,bp(A)I(,(mAwSA- 
(4 

The notations are  the same as  i n  (2.12). 
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